228 research outputs found

    Principled Design and Implementation of Steerable Detectors

    Full text link
    We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown position and orientation. We propose a continuous-domain additive image model, where the analyzed image is the sum of the template and an isotropic background signal with self-similar isotropic power-spectrum. The method is able to learn an optimal steerable filter fulfilling the SNR criterion based on one single template and background pair, that therefore strongly responds to the template, while optimally decoupling from the background model. The proposed filter then allows for a fast detection process, with the unknown orientation estimation through the use of steerability properties. In practice, the implementation requires to discretize the continuous-domain formulation on polar grids, which is performed using radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments

    Регулирование момента асинхронного двигателя частотным методом

    Get PDF
    Рассматривается система регулирования (стабилизации) момента двигателя при не­значительных изменениях скорости. Построена схема регулирования тока и напряжения инвертора изменением частоты статора. Приводятся характеристики момента в зависимости от способа регулирования в двигательном и генераторном режимах

    Solid Spherical Energy (SSE) CNNs for Efficient 3D Medical Image Analysis

    Get PDF
    Invariance to local rotation, to differentiate from the global rotation of images and objects, is required in various texture analysis problems. It has led to several breakthrough methods such as local binary patterns, maximum response and steerable filterbanks. In particular, textures in medical images often exhibit local structures at arbitrary orientations. Locally Rotation Invariant (LRI) Convolutional Neural Networks (CNN) were recently proposed using 3D steerable filters to combine LRI with Directional Sensitivity (DS). The steerability avoids the expensive cost of convolutions with rotated kernels and comes with a parametric representation that results in a drastic reduction of the number of trainable parameters. Yet, the potential bottleneck (memory and computation) of this approach lies in the necessity to recombine responses for a set of predefined discretized orientations. In this paper, we propose to calculate invariants from the responses to the set of spherical harmonics projected onto 3D kernels in the form of a lightweight Solid Spherical Energy (SSE) CNN. It offers a compromise between the high kernel specificity of the LRI-CNN and a low memory/operations requirement. The computational gain is evaluated on 3D synthetic and pulmonary nodule classification experiments. The performance of the proposed approach is compared with steerable LRI-CNNs and standard 3D CNNs, showing competitive results with the state of the art

    Retrieval of high-dimensional visual data: current state, trends and challenges ahead

    Get PDF
    Information retrieval algorithms have changed the way we manage and use various data sources, such as images, music or multimedia collections. First, free text information of documents from varying sources became accessible in addition to structured data in databases, initially for exact search and then for more probabilistic models. Novel approaches enable content-based visual search of images using computerized image analysis making visual image content searchable without requiring high quality manual annotations. Other multimedia data followed such as video and music retrieval, sometimes based on techniques such as extracting objects and classifying genre. 3D (surface) objects and solid textures have also been produced in quickly increasing quantities, for example in medical tomographic imaging. For these two types of 3D information sources, systems have become available to characterize the objects or textures and search for similar visual content in large databases. With 3D moving sequences (i.e., 4D), in particular medical imaging, even higher-dimensional data have become available for analysis and retrieval and currently present many multimedia retrieval challenges. This article systematically reviews current techniques in various fields of 3D and 4D visual information retrieval and analyses the currently dominating application areas. The employed techniques are analysed and regrouped to highlight similarities and complementarities among them in order to guide the choice of optimal approaches for new 3D and 4D retrieval problems. Opportunities for future applications conclude the article. 3D or higher-dimensional visual information retrieval is expected to grow quickly in the coming years and in this respect this article can serve as a basis for designing new applications

    Region-based volumetric medical image retrieval

    Get PDF
    Volumetric medical images contain an enormous amount of visual information that can discourage the exhaustive use of local descriptors for image analysis, comparison and retrieval. Distinctive features and patterns that need to be analyzed for finding diseases are most often local or regional, often in only very small parts of the image. Separating the large amount of image data that might contain little important information is an important task as it could reduce the current information overload of physicians and make clinical work more efficient. In this paper a novel method for detecting key-regions is introduced as a way of extending the concept of keypoints often used in 2D image analysis. In this way also computation is reduced as important visual features are only extracted from the detected key regions. The region detection method is integrated into a platform-independent, web-based graphical interface for medical image visualization and retrieval in three dimensions. This web-based interface makes it easy to deploy on existing infrastructures in both small and large-scale clinical environments. By including the region detection method into the interface, manual annotation is reduced and time is saved, making it possible to integrate the presented interface and methods into clinical routine and work ows, analyzing image data at a large scale

    Case-based lung image categorization and retrieval for interstitial lung diseases: clinical workflows

    Get PDF
    Purpose: Clinical workflows and user interfaces of image-based computer-aided diagnosis (CAD) for interstitial lung diseases in high-resolution computed tomography are introduced and discussed. Methods: Three use cases are implemented to assist students, radiologists, and physicians in the diagnosis workup of interstitial lung diseases. Results: In a first step, the proposed system shows a three-dimensional map of categorized lung tissue patterns with quantification of the diseases based on texture analysis of the lung parenchyma. Then, based on the proportions of abnormal and normal lung tissue as well as clinical data of the patients, retrieval of similar cases is enabled using a multimodal distance aggregating content-based image retrieval (CBIR) and text-based information search. The global system leads to a hybrid detection-CBIR-based CAD, where detection-based and CBIR-based CAD show to be complementary both on the user's side and on the algorithmic side. Conclusions: The proposed approach is in accordance with the classical workflow of clinicians searching for similar cases in textbooks and personal collections. The developed system enables objective and customizable inter-case similarity assessment, and the performance measures obtained with a leave-one-patient-out cross-validation (LOPO CV) are representative of a clinical usage of the syste

    Comparative Performance Analysis of State-of-the-Art Classification Algorithms Applied to Lung Tissue Categorization

    Get PDF
    In this paper, we compare five common classifier families in their ability to categorize six lung tissue patterns in high-resolution computed tomography (HRCT) images of patients affected with interstitial lung diseases (ILD) and with healthy tissue. The evaluated classifiers are naive Bayes, k-nearest neighbor, J48 decision trees, multilayer perceptron, and support vector machines (SVM). The dataset used contains 843 regions of interest (ROI) of healthy and five pathologic lung tissue patterns identified by two radiologists at the University Hospitals of Geneva. Correlation of the feature space composed of 39 texture attributes is studied. A grid search for optimal parameters is carried out for each classifier family. Two complementary metrics are used to characterize the performances of classification. These are based on McNemar's statistical tests and global accuracy. SVM reached best values for each metric and allowed a mean correct prediction rate of 88.3% with high class-specific precision on testing sets of 423 ROI

    Standardised convolutional filtering for radiomics

    Full text link
    The Image Biomarker Standardisation Initiative (IBSI) aims to improve reproducibility of radiomics studies by standardising the computational process of extracting image biomarkers (features) from images. We have previously established reference values for 169 commonly used features, created a standard radiomics image processing scheme, and developed reporting guidelines for radiomic studies. However, several aspects are not standardised. Here we present a preliminary version of a reference manual on the use of convolutional image filters in radiomics. Filters, such as wavelets or Laplacian of Gaussian filters, play an important part in emphasising specific image characteristics such as edges and blobs. Features derived from filter response maps have been found to be poorly reproducible. This reference manual forms the basis of ongoing work on standardising convolutional filters in radiomics, and will be updated as this work progresses.Comment: 62 pages. For additional information see https://theibsi.github.io
    corecore